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The Theory of Topos-Theoretic ‘Bridges’—A
Conceptual Introduction

Olivia Caramello

Introduction

Mathematics is divided into several distinct areas: geometry, number theory, algebra,

analysis, mathematical logic, and so on. Each of these areas has evolved throughout the

years by developing its own ideas and techniques, and by now has reached a remarkable

degree of specialization. Now, even more than in the past, we feel the need to unify

theories that could intra-disciplinarily connect different areas of mathematics with their

different sets of concepts, objects, and methods, in new and powerful ways, hence

providing effective tools for solving long-standing problems. It has happened several

times that solutions to profound problems in one field have first, or only, been obtained

by using methods from other fields, and this indicates that Mathematics should be seen

as a coherent whole rather than a collection of separate fields. Think for example of

analytic geometry, which allows the study of geometrical shapes using algebraic

manipulation, or the Grothendieckian notion of spectra, which allows the study of

discrete objects using a geometric continuous intuition.

The importance of ‘bridges’ between different areas lies in the fact that they make it

possible to transfer knowledge and methods between the areas, so that problems

formulated in the language of one field can be tackled (and possibly solved) using

techniques from a different field, and results in one area can be appropriately transferred

to results in another.
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A few years ago, I had the intuition that the theory of Grothendieck toposes could

provide a powerful means for unifying different mathematical theories. More precisely, I

imagined that the possibility of representing toposes in multiple ways could be exploited

for building ‘bridges’ interconnecting different theories and allowing a transfer of

information between them.

Toposes are abstract logical concepts that lie at a level of generality which is ideal for

shedding light on Mathematics as a whole. To any mathematical theory of a very general

nature (algebraic, geometrical, etc.) one can associate a topos, called the classifying topos

of the theory, which embodies its essential features (i.e., precisely those features which

are invariant under a general notion of theoretical equivalence). This enables us to study

theories by studying their classifying toposes. Different theories may be classified by the

same topos; this means precisely that they describe the same structures in different

languages. The existence of different theories classified by the same topos translates, at

the technical level, into the existence of multiple representations for that topos. The

latter can then be used as a ‘bridge’ for transferring properties, notions and results across

those theories.

Throughout the past years, I have developed a set of intra-disciplinary methods and

techniques for effectively using toposes as unifying ‘bridges,’ and, in doing this, I have

uncovered a number of connections between different mathematical theories that were

previously hidden and, in many cases, even unsuspected. Initially, in 2010, my view was

supported by the results obtained in my Ph.D. dissertation. My subsequent work brought

new evidence every year, some of which provided the solution to long-standing

problems. By now a substantial body of mathematical results has been produced: this

includes a number of deep applications into distinct fields such as Algebra, Geometry,

Topology, Functional Analysis, Model Theory, and Proof Theory.

The purpose of this article is to give a conceptual introduction, accessible to

non-specialists, to the theory of topos-theoretic ‘bridges.’1 The last section of the paper is

more technical and requires a basic familiarity with logic and category theory to be

properly understood.2

The Concept of Unification

Before we proceed any further, let us first clarify the term ‘unification,’ as it is somewhat

ambiguous and can be used with different meanings.
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‘Static’ and ‘Dynamic’ Unification
We can distinguish two different kinds of unification: ‘static’ and ‘dynamic.’

. With ‘static’ unification (through generalization), two concepts are seen to be special

instances of a more general concept:

Results that apply to the general concept may be specialized to yield results on the two

more particular concepts.

. With ‘dynamic’ unification (through construction), on the other hand, two objects are

related to each other through a third one (usually constructed from each of them), which

acts as a ‘bridge’ enabling the transfer of information between them:

The transfer of information arises from the process of ‘translating’ properties (or

constructions) on the ‘bridge object’ into properties (or constructions) on the two

objects.

We call the first form of unification ‘static’ in light of the fact that recognizing two

different concepts as particular cases of a more general one does not in and of itself offer

a way for transferring information between them. For example, the fact that both
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preorders and groups are particular instances of the general notion of category does not

in and of itself provide a means of transferring results about preorders to results about

groups, or vice versa.

On the other hand, the second form of unification allows a ‘dynamic’ transfer of

information between the two given objects. Indeed, the third object which is associated

or constructed from each of the two objects admits two different ‘representations,’

corresponding to the two different ways of constructing it from each of the two objects.

Such an object thus yields ‘bridges’ between the two given objects in the sense that

information can be transferred between them by translating properties of (or

constructions on) the bridge object into properties of (or constructions on) the two

objects, by exploiting its two different representations.

Let us illustrate the difference between these two kinds of unification using some

notable mathematical examples.

By providing a system in which all the usual mathematical concepts can be expressed

rigorously, Set Theory represented the first serious attempt of Logic to unify

Mathematics, at least at the level of language. Later, Category Theory provided an

alternative abstract language in which most of Mathematics can be formulated and, as

such, has represented a further advancement towards the goal of ‘unifying Mathematics.’

Anyway, both of these systems realize a ‘static’ unification in that, whilst each of them

provides a way of expressing and organizing Mathematics in one single language, they do

not in and of themselves offer effective methods for an actual transfer of knowledge

between distinct fields.

On the other hand, the theory of topos-theoretic ‘bridges’ provides a systematic way to

compare distinct mathematical theories with each other and to transfer knowledge

between them. In this setting, the two objects to be related to each other are distinct

mathematical theories which share a common ‘semantic core,’ while the bridge object is

a Grothendieck topos representing precisely this common ‘core.’

As a given ‘bridge object’ can generally interconnect not just two objects but many

different pairs of objects, so in the topos-theoretic setting, for each topos there exist

infinitely many different mathematical theories associated with it (through the

classifying topos construction).

Other instances of dynamic unification certainly occur in Mathematics; in fact,

invariants are always sources of ‘bridges’ between objects on which they are defined. So,

for example, the fundamental group of a topological space can be used as a bridge for

transferring information between topological spaces, in the sense that if two topological
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spaces have isomorphic fundamental groups, then certain topological properties, such as

simple connectedness, can be transferred across the spaces. Similarly, groups can be used

to classify geometries, as in Klein’s Erlangen Program, etc.

The startling aspect of toposes is that, unlike most of the invariants considered in

Mathematics, they allow us to compare and effectively interconnect mathematical

theories that may belong to several different subfields of Mathematics.

The Idea of ‘Bridge’
One is generally interested in comparing pairs of objects between which there is some

kind of relationship.

In order to transfer information between objects related by a given relationship, it is thus

of fundamental importance to identify (and, possibly, classify) the properties of the

objects that are invariant with respect to that relationship.

Depending on the cases, this can be a reasonably manageable task or a hopelessly

difficult one. In fact, a relationship between two given objects is generally an abstract

entity, which lives in an ideal context that is normally different from that in which the

two objects lie.

It thus becomes of crucial importance to identify more concrete entities that could act as

‘bridges’ connecting the two given objects. We can think of a bridge object connecting two

objects a and b as an object u which can be ‘built’ from any of the two objects a and b, and

which admits two different representations f(a) and g(b) related by some kind of

equivalence ≃, the former representation being in terms of the object a and the latter in

terms of the object b:
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The transfers of information arise from the process of ‘translating’ ≃- invariant

properties of (or constructions on) the ‘bridge object’ u into properties of (or

constructions on) the two objects a and b by using the two different representations of u.

Notice that the invariance with respect to ≃ is essential in order to be able to regard the

given property of (or construction on) u both from the point of view of a, by using f, and

from the point of view of b, by using g. Of course, such a ‘bridge’ is more or less useful

depending on whether the ‘encodings’ f and g are sufficiently well-behaved to allow

genuine ‘unravellings’ of the given property of (or construction on) f(a) (or g[b]) in terms

of properties of (or constructions on) a (respective of b).

The idea of ‘bridge’ is strictly related to that of ‘invariant construction.’ Given two sets I

and O, and two equivalence relations≃I and≃O respectively on I and on O, we may

define an invariant construction f: (I,≃I) → (O,≃O) is a function f: I → O which respects

the equivalence relations (i.e., such that whenever x ≃I y, f[x] ≃O f[y]). We say that f is

conservative if it reflects the equivalence relations (i.e., whenever f[x] ≃O f[y], x ≃I y).

Given an invariant construction f: (I, ≃I) → (O, ≃O), a bridge object connecting two

objects x, y ∈ I is an object b ∈ O such that b ≃O f(x) and b ≃O f(y). Given a conservative

invariant construction f: (I, ≃I) → (O, ≃O), bridge objects in O, considered up to

≃O-equivalence, can be thought of as classifying objects, since they can be taken as

canonical representatives of≃I-equivalence classes.

Of course, a ‘bridge’ of this kind is most useful in classifying≃I -invariant properties in

cases in which it is more manageable to work with objects of type O than with objects of

type I, or when the relation≃O is more tractable than the relation≃I.

As we shall see in section IV, in the context of the theory of topos-theoretic ‘bridges’ the

objects to be compared with each other are mathematical theories (formalized within a

kind of first-order logic), while the invariant construction is given by the classifying

topos construction.

Structural Translations
The bridge method can be interpreted linguistically as a methodology for translating

concepts from one context to another. But which kind of translation is this? Generally

speaking, we distinguish between two essentially different approaches to translation:
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1) the ‘dictionary-oriented’ or ‘bottom-up’ approach, consisting in a dictionary-based

renaming of the single words composing the sentences, and

2) the ‘invariant-oriented’ or ‘top-down’ approach, consisting in the identification of

appropriate concepts that should remain invariant in the translation, and in the

subsequent analysis of how these invariants can be expressed in the two languages.

As would be expected, translations of the former kind, though occasionally useful, are

not intrinsically profound in that they do not change the ‘shape’ of the sentences on

which they operate and hence do not provide significantly different ways for conveying a

certain message. On the other hand, the invariant-oriented translations are liable to

significantly change the syntactical form used to express a certain meaning, and thus to

generate new insights and points of view on the given message. We shall come back to

this topic in section III.B.

Translations across distinct mathematical theories realized through bi-interpretations

between them are of the former kind. Indeed, bi-interpretation acts as a sort of

dictionary for translating formulae written in the language of the first theory into

formulae written in the language of the second. On the other hand, ‘bridge-based’

translations, and in particular topos-theoretic ones, are of the latter kind. In fact, in the

context of the theory of topos-theoretic ‘bridges,’ the invariant properties are

topos-theoretic invariants defined on toposes, and the expression of these invariants in

terms of the two different theories is essentially determined by the structural relationship

between the topos and its two different representations.

Some Examples of ‘Bridges’ in Science

In order to illustrate the concept of the ‘bridge’ as explained above, let us discuss a few

scientific situations that can be naturally interpreted in terms of ‘bridges.’

Astronomy: The ‘Classifying Star’ of a Planet
The universe is composed of several stars, around which revolve certain bodies, called

planets. Different planets can revolve around a given star, but every planet revolves

around a single star, which we call the planet’s classifying star.

The trajectory that a given planet makes around its classifying star is determined by two

sets of ingredients, namely the parameters determining the ellipse and the period of

revolution around its classifying star. This pair (ellipse parameters and period of

revolution) for a given planet determines its orbit and its classifying star. The classifying

star can be identified uniquely from any planet that is classified by it (equivalently, from
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the pair associated with it), and represents the ‘right’ point of view from which one

should observe it (in fact, the elliptic motion of a planet looks very weird if observed from

any other point of view than one of its foci).

Different planets revolving around the same star can be studied in relation to each other

using properties of the common classifying star, which therefore acts as a ‘bridge object’

across them. In fact, there are natural relationships between properties of planets and

properties of the stars around which they revolve.

To have an idea of the use of ‘bridges’ in Astronomy, think for example of Kepler’s laws.

The property that all the planets revolving around a given star have elliptic orbits can be

regarded as an invariant property of stars (or, more generally, of bodies around which

other bodies revolve). The concrete orbit of a given planet can be seen as arising from the

process of expressing this abstract invariant ‘the orbits are elliptic’ in terms of the

concrete pair associated with the given planet. So the forms of the orbits of two distinct

planets around the same star represent different instances of a unique abstract pattern.

Also, it is often the case that by investigating the features of a given planet, one can infer

properties of its classifying star, and that these properties can in turn be ‘reflected back’

into properties of another planet revolving around the same star. For example, the third

Kepler’s law asserts that the ratio of the square of the orbital period of a planet by the

cube of the semi-major axis of its orbit is a constant that is characteristic of the star and

does not depend on the given planet. This principle can thus be regarded as an invariant

property of stars (or, more generally, of bodies around which other bodies revolve), and

the concrete trajectories made by the planets can be interpreted as different

manifestations of this abstract property in the context of the distinct (pairs associated

with the) planets. The common classifying star can thus be used as a ‘bridge’ to transfer

information between the two planets; indeed, investigation of the concrete trajectory of

a planet can allow one to infer the characteristic constant of its classifying star, and this

piece of information in turn determines the concrete trajectory of any other planet

revolving around it.

Linguistics: ‘Bridges’ for Translating
A fundamental feature of a translation is the set of abstract properties of texts (for

example, the ‘meaning,’ the ‘musicality,’ ‘structural’ characteristics, etc.) which it leaves

invariant.
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A literal translation proceeds in a bottom-up or dictionary-oriented way, as it consists,

broadly speaking, in splitting the given text into sentences and then into words or short

expressions, replacing each word (or short expression) in the first language with a word

(or short expression) in the other language that corresponds to it according to a given

dictionary, and then assembling these words together ‘from the bottom up,’ following

the same or at most a similar grammatical structure to that in which the corresponding

words (or short expressions) were arranged in the original text. From this description, it

is clear that what is preserved by this kind of translation is the syntactical structure of the

sentences that make up the texts, but not necessarily the meaning or musicality of the

texts, which is what one would naturally expect from a good translation. This is why

automatic or literal translations are not always possible, and even when they are, are

often rather unsatisfactory, especially when they occur between languages that have

radically different syntactical ways of expressing a given meaning.

This naturally raises the following question: what type of approach should one adopt to

obtain a good translation? Unlike a literal translation, a good translation should proceed

in a top-down or invariant-oriented way, starting with the identification of a set of

abstract properties of texts that one would like to preserve in the translation, and then

using any such property P (or the ‘intersection’ of all such properties) as a ‘bridge’ for

translating between the two languages, as follows. For each such P one looks at the way P

is best expressed in the first language, and then at the way P can be best conveyed in the

second language; the resulting expressions are then set to correspond to each other in

the translation.

Note that in a translation of this kind, it is not necessarily the syntactical structure that

must be preserved, as in the case of a literal translation, but rather the properties defined

at the beginning as the chosen invariants. While a literal translation is neither

particularly interesting nor conceptually profound, in that it essentially consists in a

re-naming or re-labeling of the primitive constituents of a text according to a dictionary,

a good literary translation is often a work of art which may reveal new aspects of a text

that were, in a sense, ‘hidden’ in the original version, allowing new and different

interpretations of the message.

Genetics: DNA as a ‘Bridge’
(Human) DNA embodies many of the essential features of the individual to which it

belongs, but is invariant with respect to contingent features of the individual, such as its

particular physical appearance at a given time (or its age).
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DNA is determined essentially solely by the individual but it can be extracted from him/

her in many different ways (for example, from different parts of the body). Many specific

features of individuals are reflected in particular features of their DNA.

This makes the DNA a particularly suitable object for acting as a ‘bridge’ for transferring

information across different individuals. For instance, the discovery of similarities

between the DNA of different individuals may reveal parental relationships between

them or similar predispositions to certain diseases.

Notice that the kind of insight that the investigation of DNA can provide cannot be

obtained with alternative methods: indeed, only by using this level of analysis can one

unveil the ‘hidden’ features of individuals encoded within the DNA.

This is similar to what happens in Topos Theory: the notion of a classifying topos of a

theory plays the role of a sort of DNA of the theory, the investigation of which can reveal

aspects of the theory that are barely visible with other techniques. As in Genetics one

studies how modifications of the DNA influence the characteristics of an individual, so

in Topos Theory one can study the effect that topos-theoretic operations on toposes

have on the theories classified by them.

Ideal = Real?
Bridges abound both in Mathematics and in other scientific fields, and can be considered

‘responsible’ (at least abstractly) for the ‘genesis’ of things and the nature of reality as we

perceive it. The idea of the bridge is an abstraction, but, interestingly, bridges arising in

the experimental sciences can often be identified with actual physical objects. In fact, the

most enlightening situations occur when these ideal objects admit concrete

representations, allowing us to contemplate the dynamics of ‘differentiation from the

unity’ in all its aspects.

Grothendieck toposes allow us to materialize a tremendous number of ideal objects, and

hence to establish effective bridges between a great variety of different contexts. In

general, looking for ‘concrete’ representations of ‘imaginary concepts’ can lead to the

discovery of more ‘symmetric’ environments in which phenomena can be described in

natural and unified ways.

Toposes as ‘Bridges’

Now that we have extracted the essential conceptual features of the ‘bridge’ technique,

we can proceed to illustrating its implementation in the context of topos theory.
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The General Methodology
The theory of topos-theoretic ‘bridges’ is centered around the concept of Grothendieck

topos.3 The theory of Grothendieck topos is written in categorical language, but, unlike

Category Theory, it is much more expressive, due to an additional degree of freedom

implicit in the definition of topos. Indeed, a category can be thought of as a pair of sets

related by some structure satisfying certain properties; any set can be regarded as a

category, but most of the categories arising in Mathematics are not of this form. In fact,

the concept of category has, with respect to the notion of set, an additional degree of

freedom.

Toposes are mathematical objects which are built from a pair, called a site, consisting of a

category C and a generalized notion of covering J on it in a certain canonical way (called

Grothendieck topology). The process that produces a topos from a given site can be

described as a sort of ‘completion’ with respect to certain categorical operations relative

to which the category C might not be closed. Formally, a topos is defined as a category

Sh(C, J) of sheaves on a site (C, J).

Different coverings can be considered on a given category, generally leading to

inequivalent toposes; this gives the notion of topos one more degree of freedom with

respect to that of category. The existence of these three ‘degrees of freedom’ implicit in

the concept of a topos (two for the notion of category and one for that of Grothendieck

topology) can be exploited to build ‘mathematical universes’ in which mathematical

theories find their natural home and can be effectively compared with each other.

In fact, thanks to the pioneering work of Makkai and Reyes in the seventies,4 to any

mathematical theory T (of a general specified form, technically speaking a geometric

theory) one can canonically associate a topos ET, called the classifying topos of T, which

represents the natural framework in which the theory should be investigated, both in

itself and in relationship to other theories. Two theories having the same classifying

toposes (up to equivalence) are said to be Morita-equivalent.

The existence of theories that are Morita-equivalent to each other translates, at the level

of sites, into the existence of different sites generating the same topos (up to

equivalence); indeed, to any theory one can canonically associate a site such that the

topos built from it can be identified with its classifying topos.

The classifying topos of a theory can be effectively used as a ‘bridge’ to transfer

information between the theory and any other theory that is Morita-equivalent to it, as

follows. For any given property or construction of toposes which is invariant under

equivalence of toposes (one requires this invariance because the classifying topos is
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determined only up to equivalence), one tries to express it first in terms of one theory

and then in terms of the other; provided that one obtains appropriate characterizations

connecting properties of theories and properties of their classifying toposes

(equivalently, characterizations connecting properties of sites and properties of toposes).

This will lead to a logical relationship between properties of the two theories written in

their respective languages:

Technically, the transfer of information across the two theories is realized by attaching

to the two theories suitable sites of definition for their classifying topos (or objects of a

different kind representing their classifying topos), and expressing topos-theoretic

invariants on the given classifying topos in terms of these two sites by means of ‘site

characterizations’:

A striking aspect of this technique, in addition to its level of generality (indeed, it can be

applied to mathematical theories belonging essentially to any mathematical field), is the

fact that it can be automated in many cases. Indeed, using the methods of Topos Theory

one can obtain characterizations of the above kind for several invariants, holding

The Theory of Topos-Theoretic ‘Bridges’—A Conceptual Introduction | Olivia Caramello

12 / 14

http://www.glass-bead.org/wp-content/uploads/Fig4New-copie.jpg
http://www.glass-bead.org/wp-content/uploads/Fig5New-copie.jpg


uniformly for any theory or at least for wide classes of theories (and for certain classes of

invariants such characterizations can even be established in a purely mechanical way); in

the presence of a Morita-equivalence, these characterizations will thus be able to act as

the ‘arches’ of a ‘bridge’ connecting the two theories, making it possible to transfer

information between them.

As is naturally expected, the translations between properties of Morita-equivalent

theories realized by means of the ‘bridge’ technique can be very surprising. Indeed, a

unique abstract invariant property defined at the topos-theoretic level may be expressed

in completely different ways in terms of different sites of definition of a given topos.

As an example, consider the property of completeness of a theory: a geometric theory is

said to be complete if every geometric assertion written over its language is either

provably true or provably false in the theory. Proving that a theory is complete is

generally a difficult matter. Nonetheless, this property is equivalent to a simple invariant

property of the classifying topos (namely, its property of being two-valued), admitting

alternative reformulations in terms of other sites of definition. For instance,5 this

invariant property is equivalent to the joint embedding property on a category C (i.e., the

property that any two objects in the category can be mapped to a third one) in the case of

a non-trivial atomic site (Cop, Jat) (keeping in mind that the atomic topology Jat on the

dual of a category C satisfying the amalgamation property is the Grothendieck topology

having as covering sieves precisely the non-empty ones). Notice that the joint embedding

property on a category is generally a much simpler way to verify a property than proving

completeness of a theory; nonetheless, for theories T whose classifying topos is a topos of

sheaves on an atomic site (Cop, Jat), the two properties (i.e., completeness of T and joint

embedding property of C) correspond to each other under a topos-theoretic ‘bridge,’

which thus allows one to be established by verifying the other.6

Why Toposes?
One might wonder what makes Grothendieck toposes so effective in serving as ‘bridges’

for connecting different mathematical theories with each other. There are several

reasons for this, which we can summarize as follows:

. Generality: Unlike most of the invariants used in Mathematics, the level of generality of

topos-theoretic invariants is such that they are suitable for comparing (first-order)

mathematical theories of essentially any kind.

. Expressivity: Many important invariants arising in Mathematics can be expressed as

topos-theoretic invariants.
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. Centrality: The fact that topos-theoretic invariants often specialize to important

properties or constructions of natural mathematical or logical interest is a clear

indication of the centrality of these concepts in Mathematics. In fact, whatever happens

at the level of toposes has ‘uniform’ ramifications in Mathematics as a whole.

. Technical flexibility: Toposes are mathematical universes that are very rich in terms of

internal structure; moreover, they have a very well-behaved representation theory, which

makes them extremely effective computationally when considered to be ‘bridges.’
More information on the theory of topos-theoretic ‘bridges’ and Olivia Caramello’s research can be
found at www.oliviacaramello.com (http://www.oliviacaramello.com)
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